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A quick look at the Stata manual

• “The real power of Stata is not revealed until you 
program it.” Stata User’s Guide Release 16, p.184

• Two program languages:
– ado
– Mata

• Both languages can interact with each other
• Today, we will focus on the first, ado

1.1 Description and use of programs
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What are programs?

• In Stata, programs look as follows:
program progname

commands
end

• You have to run the program definition once1

• If you then type progname, the commands defined in the 
program are run

• All Stata commands you know from do-files can be used 
in programs

1.1 Description and use of programs
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1 or store the file with the definition as ado-file in the ado-directory
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Why should you program Stata?

• Programs are routines which can be adjusted and 
applied to different situations 
– E.g., if you have your own table style, you could write a program

for this instead of adjusting it to every dataset
• Sometimes, there are no good commands for the

statistical problem you have
– E.g., if you want to adjust your standard errors in a specific way
– Very useful in combination with Mata

• In any case, you will understand better how Stata works, 
how commands are written, and how to solve errors

1.1 Description and use of programs
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Passing arguments to programs

• Most programs use arguments:
regress life_expectancy income

• Here, regress is the progname, and life_expectancy and 
income are the arguments

• The arguments are passed to the program with locals

1.2 Arguments
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Local Content
`0‘ Exactly what was typed, including typed blanks etc.
`1‘ The first argument
`2‘ The second argument
`*‘ All arguments without double quotes and with proper blanks

• The arguments can also be named using args
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Overview of temporary objects

• Sometimes you need intermediate variables, matrices or 
estimations for calculations or other purposes

• In programs, two issues might emerge:
– You have to make sure that the name you give to the object does 

not already exist
– Once you are done with the process, you don't need the object 

anymore, it is in your way
• Sometimes, preserve and restore can be helpful, but if the 

program also has permanent outputs, this might not be 
what you need

• Locals have traits which would solve these issues, but 
they can only store a certain kind of information

1.3 Temporary objects and storage
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Overview of temporary objects

• For programming, you can use temporary objects which 
work similar to locals

• There are different types of temporary objects
– tempvar
– tempname
– tempfile

• Used as command, all create temporary names, which 
then can be used to create objects which will be deleted 
after the program ends

1.3 Temporary objects and storage
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What exactly is Stata doing?

• To find out how your (or any other) program is working, 
you can use set trace on and run the program

• Stata will then display you every single working step
• This is very time- and space-consuming, so remember to 

turn it off using set trace off

• The command is very useful to detect where in the 
routine an error occurred

1.3 Temporary objects and storage
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Creating your own (e)return lists

• Like the standard Stata programs, results from self-
written programs can be stored in r(), e(), or s()

• For this, you can specify the class of the programm as 
rclass, eclass, or sclass
– rclass: return list for most commands
– eclass: return list for estimation commands (for a recommended 

convention, see [P] eclass)
– sclass: special return list for locals in subroutines (see next topic)

1.3 Temporary objects and storage

11Stata Self-Learning Course



Running subroutines

• A topic very related to storage is the use of subroutines
• You can run not only Stata commands, but also your own 

programs within programs
• Note that locals are truly local to programs: You can use 

a local only within the program in which it was created, 
not in nested programs/subroutines

• Most of the time, this is very convenient: You do not have 
to check whether this local name was used in any other 
nested program

• Sometimes, you might want to transfer the content of a 
local to another program – use globals or sreturn for this
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1.4 Subroutines
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Advanced Programming
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Introduction to the syntax

• Last lecture, you were familiarized with arguments and 
program classes

• But there is more information we can pass to programs 
(if, in, weights, options…), take for example

reg income age sex if country == "France”
• How can we interpret the user‘s input in a meaningful 

way?
• How can we assure that the user only specifies 

reasonable input?
• For this, we can tell Stata which elements should be

accepted by the program, using the syntax command

2.1 Parsing
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Introduction to the syntax

• In this example, regress needs at least one variable, and
we want to allow the user to specify if/in specifications

• Thus, the syntax command would read as follows*:
syntax varlist(min=1) [if] [in]

• This specification demands at least one variable and
allows if and in specifications optionally

• If the user now types
reg income age sex if country == "France”

syntax creates the following locals: 
`varlist‘ income age sex
`if‘ if country == "France”
`in‘ (empty)

2.1 Parsing
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* The real regress command also allows for weights and options, this is a simplified version
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Introduction to the syntax

syntax varlist(min=1) [if] [in]
• In this example, varlist is the input/argument
• There are three types of arguments which can be used for the

syntax command: varlist, namelist, and anything
• Both varlist and namelist have subtypes, but the respective local will 

always be `varlist‘/`namelist‘

2.1 Parsing
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Type Subtype Comment Local

varlist varlist List of existing variables varlist

varname Abbrev. for varlist(max=1)

newvarlist List of names for new variables

newvarname Abbrev. for newvarlist(max=1)

namelist namelist List of names for matrices/locals/variables namelist

name Abbrev. for name(max=1)

anything Any input (commas need to be in quotes) anything



Parsing

• The syntax command is part of the parsing process
• This process describes the break-down of the user‘s 

entry into meaningful elements and conversion into a 
meaningful structure

• For example, syntax stores the elements passed to the 
command before if/in or other special elements in `varlist‘

• You can define your own parsing rules using gettoken and
tokenize

2.1 Parsing

17Stata Self-Learning Course



Helpful options and commands

• The marksample command can be used after syntax to 
generate a temporary indicator variable marking the 
observations which should be used (e.g. according to if)

• Remember that quietly suppresses the Stata output but 
still stores the results in r() etc. if applicable

2.1 Parsing
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Options with the syntax command

• Another type of input are options, e.g.
reg income age sex if country == "France”, vce(cluster district)

• The syntax command allows you to program your own options, 
e.g.

syntax varlist(min=1) [if] [in], vce(namelist)
• You can specify options to be mandatory (no brackets) or 

optional (squared brackets)
• You can define abbreviations (abbreviation in caps)
• You can have options which are only words (e.g. replace) and 

options which require input (e.g. vce)
• For the latter, an input type is needed (varlist, numlist etc.) 

which can be amended by constraints (numeric, min/max etc.)

2.2 Options
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Options with the syntax command

syntax [if] [in/], RUNning(varlist numeric) [root(integer 2)]

2.2 Options
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accepts no argument (there is nothing 
between syntax and the comma except 
for if/in/using)

“if” optional, stores the phrase 
in local `if’ with the word “if”

requires the option running (abbrev. run), but 
only with numeric variables, and stores the 
input in the local `running’

allows the option root with an integer, 
otherwise takes the integer 2 as default, 
and stores the input in the local `root’

“in” optional, stores the 
phrase in local `in’ 
without the word “in” 
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More helpful options and commands

• Program options
– The byable option lets the program accept the by prefix
– The sortpreserve option tells Stata to restore the previous sorting 

after the program ends
• Remember that quietly suppresses the Stata output but 

still stores the results in r() etc. if applicable

2.2 Options
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A remark on error messages 

• The syntax command comes with its own error messages 
for misspecification of the program syntax

• However, it might be useful to write your own error 
messages or warnings to prevent mistakes

• We have done this before using display and exit, but you 
can also include the pre-defined error codes using error

• To have the output printed red, type display in red

2.2 Error messages
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Applied Programming
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From the code to the program

• If you write your own program, you will seldomly write it 
„top to bottom“

• Most of the time, you will already have some code which 
you want to generalize

• Hence, you need to think how you make it adaptable to a 
wider setting, e.g.
– change variable names to locals/tempvars
– run loops over variables/groups/levels

• Also think about how the user will use the program
– make it as general as possible (allow as many options/variable 

types as reasonable)
– still, only allow input/options which make sense
– write meaningful error checks and messages

3.1 General hints
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Useful thoughts/checks

If you write a program, think about: 
• Do you want to put something to the return/ereturn list?
• What input do you need? What should be specified or 

chosen by the user? 
• Can the syntax command take care of it?
• Do you need error checks? 
• Where might if-branches be needed?
• After running the program, will the dataset/working space 

be the same except for the required changes?
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3.1 General hints
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Useful commands/procedures

• Confirm types/classes etc.
confirm

• Count words/elements/arguments
wordcount() local w: word count

• Count distinct levels
unique levelsof `var’, local(w)

• String functions and extended macro functions
help string function help macro

• Expand local lists during loops
• Use temporary objects
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3.1 General hints
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