
Programming in Stata

Stata Self-Learning Course



Overview

1. Introduction to programming in Stata
1. Description and use of programs
2. Arguments
3. Temporary objects and storage
4. Subroutines

2. Advanced programming
1. Parsing
2. Options
3. Error messages

3. Applied programming
1. Tables
2. Graphs



Introduction to Programming in Stata

Stata Self-Learning Course



A quick look at the Stata manual

• “The real power of Stata is not revealed until you 
program it.” Stata User’s Guide Release 16, p.184

• Two program languages:
– ado
– Mata

• Both languages can interact with each other
• Today, we will focus on the first, ado

1.1 Description and use of programs

4Stata Self-Learning Course



What are programs?

• In Stata, programs look as follows:
program progname

commands
end

• You have to run the program definition once1

• If you then type progname, the commands defined in the 
program are run

• All Stata commands you know from do-files can be used 
in programs

1.1 Description and use of programs

5

1 or store the file with the definition as ado-file in the ado-directory

Stata Self-Learning Course



Why should you program Stata?

• Programs are routines which can be adjusted and 
applied to different situations 
– E.g., if you have your own table style, you could write a program

for this instead of adjusting it to every dataset
• Sometimes, there are no good commands for the

statistical problem you have
– E.g., if you want to adjust your standard errors in a specific way
– Very useful in combination with Mata

• In any case, you will understand better how Stata works, 
how commands are written, and how to solve errors

1.1 Description and use of programs

6Stata Self-Learning Course



Passing arguments to programs

• Most programs use arguments:
regress life_expectancy income

• Here, regress is the progname, and life_expectancy and 
income are the arguments

• The arguments are passed to the program with locals

1.2 Arguments

7

Local Content
`0‘ Exactly what was typed, including typed blanks etc.
`1‘ The first argument
`2‘ The second argument
`*‘ All arguments without double quotes and with proper blanks

• The arguments can also be named using args

Stata Self-Learning Course



Overview of temporary objects

• Sometimes you need intermediate variables, matrices or 
estimations for calculations or other purposes

• In programs, two issues might emerge:
– You have to make sure that the name you give to the object does 

not already exist
– Once you are done with the process, you don't need the object 

anymore, it is in your way
• Sometimes, preserve and restore can be helpful, but if the 

program also has permanent outputs, this might not be 
what you need

• Locals have traits which would solve these issues, but 
they can only store a certain kind of information

1.3 Temporary objects and storage

8Stata Self-Learning Course



Overview of temporary objects

• For programming, you can use temporary objects which 
work similar to locals

• There are different types of temporary objects
– tempvar
– tempname
– tempfile

• Used as command, all create temporary names, which 
then can be used to create objects which will be deleted 
after the program ends

1.3 Temporary objects and storage

9Stata Self-Learning Course



What exactly is Stata doing?

• To find out how your (or any other) program is working, 
you can use set trace on and run the program

• Stata will then display you every single working step
• This is very time- and space-consuming, so remember to 

turn it off using set trace off

• The command is very useful to detect where in the 
routine an error occurred

1.3 Temporary objects and storage

10Stata Self-Learning Course



Creating your own (e)return lists

• Like the standard Stata programs, results from self-
written programs can be stored in r(), e(), or s()

• For this, you can specify the class of the programm as 
rclass, eclass, or sclass
– rclass: return list for most commands
– eclass: return list for estimation commands (for a recommended 

convention, see [P] eclass)
– sclass: special return list for locals in subroutines (see next topic)

1.3 Temporary objects and storage

11Stata Self-Learning Course



Running subroutines

• A topic very related to storage is the use of subroutines
• You can run not only Stata commands, but also your own 

programs within programs
• Note that locals are truly local to programs: You can use 

a local only within the program in which it was created, 
not in nested programs/subroutines

• Most of the time, this is very convenient: You do not have 
to check whether this local name was used in any other 
nested program

• Sometimes, you might want to transfer the content of a 
local to another program – use globals or sreturn for this

12

1.4 Subroutines

Stata Self-Learning Course



Advanced Programming

Stata Self-Learning Course



Introduction to the syntax

• Last lecture, you were familiarized with arguments and 
program classes

• But there is more information we can pass to programs 
(if, in, weights, options…), take for example

reg income age sex if country == "France”
• How can we interpret the user‘s input in a meaningful 

way?
• How can we assure that the user only specifies 

reasonable input?
• For this, we can tell Stata which elements should be

accepted by the program, using the syntax command

2.1 Parsing

14Stata Self-Learning Course



Introduction to the syntax

• In this example, regress needs at least one variable, and
we want to allow the user to specify if/in specifications

• Thus, the syntax command would read as follows*:
syntax varlist(min=1) [if] [in]

• This specification demands at least one variable and
allows if and in specifications optionally

• If the user now types
reg income age sex if country == "France”

syntax creates the following locals: 
`varlist‘ income age sex
`if‘ if country == "France”
`in‘ (empty)

2.1 Parsing

15
* The real regress command also allows for weights and options, this is a simplified version
Stata Self-Learning Course



Stata Self-Learning Course

Introduction to the syntax

syntax varlist(min=1) [if] [in]
• In this example, varlist is the input/argument
• There are three types of arguments which can be used for the

syntax command: varlist, namelist, and anything
• Both varlist and namelist have subtypes, but the respective local will 

always be `varlist‘/`namelist‘

2.1 Parsing

16

Type Subtype Comment Local

varlist varlist List of existing variables varlist

varname Abbrev. for varlist(max=1)

newvarlist List of names for new variables

newvarname Abbrev. for newvarlist(max=1)

namelist namelist List of names for matrices/locals/variables namelist

name Abbrev. for name(max=1)

anything Any input (commas need to be in quotes) anything



Parsing

• The syntax command is part of the parsing process
• This process describes the break-down of the user‘s 

entry into meaningful elements and conversion into a 
meaningful structure

• For example, syntax stores the elements passed to the 
command before if/in or other special elements in `varlist‘

• You can define your own parsing rules using gettoken and
tokenize

2.1 Parsing

17Stata Self-Learning Course



Helpful options and commands

• The marksample command can be used after syntax to 
generate a temporary indicator variable marking the 
observations which should be used (e.g. according to if)

• Remember that quietly suppresses the Stata output but 
still stores the results in r() etc. if applicable

2.1 Parsing

18Stata Self-Learning Course



Options with the syntax command

• Another type of input are options, e.g.
reg income age sex if country == "France”, vce(cluster district)

• The syntax command allows you to program your own options, 
e.g.

syntax varlist(min=1) [if] [in], vce(namelist)
• You can specify options to be mandatory (no brackets) or 

optional (squared brackets)
• You can define abbreviations (abbreviation in caps)
• You can have options which are only words (e.g. replace) and 

options which require input (e.g. vce)
• For the latter, an input type is needed (varlist, numlist etc.) 

which can be amended by constraints (numeric, min/max etc.)

2.2 Options

19Stata Self-Learning Course



Options with the syntax command

syntax [if] [in/], RUNning(varlist numeric) [root(integer 2)]

2.2 Options

20

accepts no argument (there is nothing 
between syntax and the comma except 
for if/in/using)

“if” optional, stores the phrase 
in local `if’ with the word “if”

requires the option running (abbrev. run), but 
only with numeric variables, and stores the 
input in the local `running’

allows the option root with an integer, 
otherwise takes the integer 2 as default, 
and stores the input in the local `root’

“in” optional, stores the 
phrase in local `in’ 
without the word “in” 

Stata Self-Learning Course



More helpful options and commands

• Program options
– The byable option lets the program accept the by prefix
– The sortpreserve option tells Stata to restore the previous sorting 

after the program ends
• Remember that quietly suppresses the Stata output but 

still stores the results in r() etc. if applicable

2.2 Options

21Stata Self-Learning Course



A remark on error messages 

• The syntax command comes with its own error messages 
for misspecification of the program syntax

• However, it might be useful to write your own error 
messages or warnings to prevent mistakes

• We have done this before using display and exit, but you 
can also include the pre-defined error codes using error

• To have the output printed red, type display in red

2.2 Error messages

22Stata Self-Learning Course



Applied Programming

Stata Self-Learning Course



From the code to the program

• If you write your own program, you will seldomly write it 
„top to bottom“

• Most of the time, you will already have some code which 
you want to generalize

• Hence, you need to think how you make it adaptable to a 
wider setting, e.g.
– change variable names to locals/tempvars
– run loops over variables/groups/levels

• Also think about how the user will use the program
– make it as general as possible (allow as many options/variable 

types as reasonable)
– still, only allow input/options which make sense
– write meaningful error checks and messages

3.1 General hints

24Stata Self-Learning Course



Useful thoughts/checks

If you write a program, think about: 
• Do you want to put something to the return/ereturn list?
• What input do you need? What should be specified or 

chosen by the user? 
• Can the syntax command take care of it?
• Do you need error checks? 
• Where might if-branches be needed?
• After running the program, will the dataset/working space 

be the same except for the required changes?

25

3.1 General hints

Stata Self-Learning Course



Useful commands/procedures

• Confirm types/classes etc.
confirm

• Count words/elements/arguments
wordcount() local w: word count

• Count distinct levels
unique levelsof `var’, local(w)

• String functions and extended macro functions
help string function help macro

• Expand local lists during loops
• Use temporary objects

26

3.1 General hints

Stata Self-Learning Course


